Stereoselective synthesis of ($3 R^{*}, 3 \mathrm{a} S^{*}, 7 \mathrm{a} S^{*}$)-3-aryloctahydroindol-2-ones using radical cyclisation: a formal synthesis of (\pm)-pancracine

Masazumi Ikeda, ${ }^{*}{ }^{a}$ Masahiro Hamada, ${ }^{a}$ Takashi Yamashita, ${ }^{a}$ Katsuaki Matsui, ${ }^{\text {a }}$
Tatsunori Sato ${ }^{a}$ and Hiroyuki Ishibashi ${ }^{* b}$
${ }^{a}$ Kyoto Pharmaceutical University, Misasagi, Yamashina, Kyoto 607-8414, Japan
${ }^{b}$ Faculty of Pharmaceutical Sciences, Kanazawa University, Takara-machi, Kanazawa 920-0934, Japan

Received (in Cambridge) 18th January 1999, Accepted 26th May 1999

Abstract

The $\mathrm{Bu}_{3} \mathrm{SnH}$ - or (TMS) $)_{3} \mathrm{SiH}$-mediated 5-endo-trig radical cyclisation of the N-(cyclohex-1-enyl)acetamide $\mathbf{1 0}$ gives a mixture of the cis-fused ($3 R^{*}, 3 \mathrm{a} S^{*}, 7 \mathrm{a} S^{*}$)- and trans-fused ($3 R^{*}, 3 \mathrm{a} S^{*}, 7 \mathrm{a} R^{*}$)-3-aryloctahydroindol-2-ones 11a and 11b, whereas the 5 -exo-trig radical cyclisation of the N-(cyclohex-2-enyl)acetamide 17 proceeds in a stereoselective manner to give only 11a. The latter method has been applied to the synthesis of the 5,11-methanomorphanthridine derivative 30, a key intermediate for the synthesis of (\pm)-pancracine $\mathbf{1}$.

In recent years, radical cyclisation has emerged as a valuable tool for the construction of carbo- and heterocyclic compounds including natural products. ${ }^{1}$ In continuation of our studies directed towards the synthesis of the nitrogen-containing natural products using radical cyclisations, ${ }^{2,3}$ we turned our attention to the synthesis of $\left(3 R^{*}, 3 \mathrm{a}^{*}, 7 \mathrm{a} S^{*}\right)$-3-aryloctahydroindoles 3, since the Pictet-Spengler cyclisation of compounds of type 3 is known ${ }^{4}$ to provide the 5,11-methano-

R = Me; Montanine 2
3
morphanthridine skeleton, ${ }^{5}$ which is a basic structural element of montanine-type Amaryllidaceae alkaloids such as pancracine $\mathbf{1}$ and montanine $2 .{ }^{6}$ The present paper describes the results of our work in this area including a stereoselective formal synthesis of (\pm)-pancracine. ${ }^{7}$

Results and discussion

First, we examined the 5 -endo-trig radical cyclisation ${ }^{8}$ of the N-(cyclohex-1-enyl)acetamide 6 . The synthesis of $\mathbf{6}$ was begun by condensation of cyclohexane-1,4-dione monoethylene acetal 4 with 4-methoxybenzylamine. Acylation of the resulting imine with (3,4-methylenedioxyphenyl)acetic pivalic anhydride gave the enamide 5 (Scheme 1). Treatment of $\mathbf{5}$ with lithium diisopropylamide (LDA) and then with benzeneselenenyl chloride afforded 6. Several attempts to introduce a phenylsulfanyl group into compound 5 failed, and attempted preparation of the haloacetyl halides as acylating agents was unsuccessful.

When the amide 6 was treated with $\mathrm{Bu}_{3} \mathrm{SnH}$ (1.1 equiv.) and a small amount of azoisobutyronitrile (AIBN) in boiling benzene, an inseparable mixture of two cyclisation products 7a and $\mathbf{7 b}$ was obtained in a ratio of $c a .1: 1$ (by ${ }^{1} \mathrm{H}$ NMR spectroscopy) and in 82% combined yield. The following chemical operations allowed us to obtain pure samples of the compounds $7 \mathbf{a}$ and $\mathbf{7 b}$. Hydrolysis of the mixture of the acetals 7a,b

Scheme 1 Reagents and conditions (and yields): i, 4-methoxybenzylamine, benzene, reflux; ii, (3,4-methylenedioxyphenyl)acetic pivalic anhydride, pyridine, benzene, $30-40^{\circ} \mathrm{C}(77 \%$ from 4$)$; iii, LDA, HMPA, THF, $-78{ }^{\circ} \mathrm{C}$; then $\mathrm{PhSeCl}(65 \%)$; iv, $\mathrm{Bu}_{3} \mathrm{SnH}$ or $(\mathrm{TMS})_{3} \mathrm{SiH}$, AIBN, benzene, reflux.
gave the ketones $\mathbf{8 a}$ and $\mathbf{8 b}$ in 54 and 47% isolated yield, respectively, each of which was again protected with ethylene glycol to give the crystalline acetals $\mathbf{7 a}$ and $\mathbf{7 b}$, respectively (Scheme 2).

The X-ray crystallographic analysis of compound 7b (Fig. 1) shows, somewhat surprisingly, the stereochemistry of the ring juncture to be trans with a trans-stereochemistry between the protons at the 3-and 3a-position. The structure of the cis-fused compound $7 \mathbf{a}$ was established by transforming it into the known compound $\mathbf{3 0}$ (vide infra).

In order to see the effect of the size of the hydride source on

Fig. 1 Single-crystal X-ray structure of compound 7b with crystallographic numbering scheme.

Scheme 2 Reagents and conditions (and yields): i, $5 \% \mathrm{HCl}$, acetone, reflux $[54 \%(\mathbf{8 a})+47 \%(\mathbf{8 b})]$; ii, ethylene glycol, TsOH, benzene, reflux (95% for $7 \mathbf{7 a}, 97 \%$ for $7 \mathbf{b}$).
the stereoselectivity of the cyclisation of $\mathbf{6}$, compound $\mathbf{6}$ was treated with tris(trimethylsilyl)silane to give a mixture of 7 a and 7b in a ratio of $c a .1: 2$ in 75% combined yield. This result suggests that a sterically more demanding hydride source such as (TMS) ${ }_{3} \mathrm{SiH}$ provides the trans-fused bicyclic compound $\mathbf{7 b}$ as the major product, although the exact reason is obscure at the moment.

Next, to address an obvious question as to why the undesired trans-fused compound $\mathbf{7 b}$ was formed from $\mathbf{6}$, we next examined the behaviour of the cyclisation of compound $\mathbf{1 0}$ having no ethylene acetal group on the cyclohexene ring. Thus, compound 10 was treated with $\mathrm{Bu}_{3} \mathrm{SnH}$ to give again a mixture of the cisand trans-fused octahydroindol-2-one derivatives, 11a and 11b, in 17 and 21% yield, respectively (Scheme 3). With (TMS) $)_{3} \mathrm{SiH}$, the trans-fused compound 11b was obtained as the major product in 39% yield along with the cis isomer 11a (21% yield). The structures of $\mathbf{1 1 a , b}$ were deduced from a comparison of their ${ }^{1} \mathrm{H}$ NMR spectra with those of $7 \mathbf{7}, \mathbf{b}$. The chemical shift

$\mathrm{Ar}=3,4$-Methylenedioxyphenyl
$\mathrm{Ar}=3,4-$-Mentonedioxyl
PMB
Scheme 3 Reagents and conditions (and yields): i, LDA, HMPA, THF, $-78^{\circ} \mathrm{C}$; then $\mathrm{PhSeCl}(42 \%)$; ii, $\mathrm{Bu}_{3} \mathrm{SnH}$ or (TMS) ${ }_{3} \mathrm{SiH}$, AIBN, benzene, reflux.
[$\delta 3.35(1 \mathrm{H}, \mathrm{dt}, J 9.9$ and 6.4$)$] due to the $7 \mathrm{a}-\mathrm{H}$ of the cis-fused isomer 11a closely resembled that for the cis-fused isomer 7a [$\delta 3.40(1 \mathrm{H}$, dt, $J 9.3$ and 6.5)] and the corresponding signals for the trans-fused isomers $\mathbf{1 1 b}$ and $\mathbf{7 b}$ appeared up field $[\delta 2.84$ $2.95(1 \mathrm{H}, \mathrm{m})$ and $2.88-2.97(1 \mathrm{H}, \mathrm{m})$, respectively]. The structure of 11a was further confirmed by transforming it into the known compound 21 (vide infra).

Thus, the 5 -endo-trig cyclisation of the N-(cyclohex-1-enyl) systems was found to be inadequate for our purposes. Therefore, our attention was next turned to the 5-exo-trig cyclisation ${ }^{9}$ of the corresponding N-(cyclohex-2-enyl) systems.

First we examined the cyclisation of the simple N-(cyclohex-2-enyl) compound 13, which was prepared by acylation of the amine $\mathbf{1 2}$ with 2-chloro-2-phenylacetyl chloride (Scheme 4).

PMB = 4-Methoxybenzyl
Scheme 4 Reagents and conditions (and yields): i, 2-chloro-2-phenylacetyl chloride, $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, room temp. (65%); ii, $\mathrm{Bu}_{3} \mathrm{SnH}$ or $(\mathrm{TMS})_{3} \mathrm{SiH}, \mathrm{AIBN}$, benzene, reflux.

Treatment of $\mathbf{1 3}$ with $\mathrm{Bu}_{3} \mathrm{SnH}$ in the presence of AIBN in boiling benzene afforded the 3 -phenyloctahydroindol-2-one 14 as a single stereoisomer in 81% yield. Similar treatment of $\mathbf{1 3}$ with (TMS) $)_{3} \mathrm{SiH}$ gave also $\mathbf{1 4}$ as the sole product in 85% yield. The structure of $\mathbf{1 4}$ was deduced from a striking resemblance of its ${ }^{1} \mathrm{H}$ NMR spectral data with those of 11a (see Experimental section).
The observed high diastereoselectivity between C-3 and C-3a can be rationalised by assuming that the radical formed from 13 attacks the double bond of the cyclohexene ring via a transition state which minimises steric repulsion between the aryl group and the C3a-C4 bond of the newly forming octahydroindolone ring.

Thus, the 5-exo-trig radical cyclisation of the N-(cyclohex-2enyl)acetamide $\mathbf{1 3}$ was found to take place in a completely stereoselective manner to give the desired $\left(3 R^{*}, 3 \mathrm{a} S^{*}, 7 \mathrm{a} S^{*}\right)$-3-aryloctahydroindol-2-one skeleton. So we then undertook a model study of the synthesis of the 5,11-methanomorphanthridine skeleton using the 2-(3,4-methylenedioxyphenyl)acetamide $\mathbf{1 7}$ as a radical precursor, which was prepared as follows. Treatment of 1,2-methylenedioxybenzene with ethyl 2-chloro-2-(phenylthio)acetate ${ }^{10}$ in the presence of TiCl_{4} gave the Friedel-Crafts reaction product 15 in 75% yield. Subsequent alkaline hydrolysis of the ester $\mathbf{1 5}$ afforded the carboxylic acid 16, which was then treated with amine $\mathbf{1 2}$ in the presence of dicyclohexylcarbodiimide (DCC) to give $\mathbf{1 7}$ (Scheme 5).
When the amide $\mathbf{1 7}$ was treated with $\mathrm{Bu}_{3} \mathrm{SnH}$ in the presence of AIBN in boiling benzene, the expected radical cyclisation product 11a was obtained in 78% yield. Similar treatment with

$\mathrm{Ar}=$ 3,4-Methylenedioxyphenyl
$\mathrm{PMB}=4$-Methoxybenzyl
Scheme 5 Reagents and conditions (and yields): i, $5 \% \mathrm{KOH}, \mathrm{EtOH}$, reflux (quant.); ii, 12, DCC, DMAP, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, room temp. (78%); iii, $\mathrm{Bu}_{3} \mathrm{SnH}$ or $(\mathrm{TMS})_{3} \mathrm{SiH}$, AIBN , benzene, reflux; iv, $\mathrm{AlH}_{3}, \mathrm{THF}$, room temp. (93%); v, Cbz-Cl, benzene, reflux (90%); vi, $\mathrm{H}_{2}, 10 \% \mathrm{Pd}-\mathrm{C}$, conc $\mathrm{HCl}, \mathrm{MeOH}$, room temp.; vii, (a) $\mathrm{HCHO}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{MeOH}$, (b) $20 \% \mathrm{HCl}$, $\mathrm{MeOH}, 30-40{ }^{\circ} \mathrm{C}$ (47% from 19).
$(\mathrm{TMS})_{3} \mathrm{SiH}$ gave 11a in 85% yield. The spectral data of 11a thus obtained were identical with those of an authentic sample prepared by cyclisation of $\mathbf{1 0}$ (see Scheme 3).
Reduction of the lactam 11a with AlH_{3} gave 18, which was heated with benzyloxycarbonyl chloride ($\mathrm{Cbz}-\mathrm{Cl}$) in benzene ${ }^{11}$ to give the carbamate 19 in 84% yield from 11a. The Cbz group of 19 was then removed by catalytic hydrogenolysis over $\mathrm{Pd}-\mathrm{C}$ in the presence of conc. HCl to give the amine hydrochloride 20. An attempt to remove the p-methoxybenzyl (PMB) group of $\mathbf{1 8}$ with cerium(Iv) ammonium nitrate (CAN) or with Na in liq. NH_{3} resulted in recovery of the starting material. The Pictet-Spengler cyclisation of $\mathbf{2 0}$ was achieved by treatment with formalin in the presence of $\mathrm{Et}_{3} \mathrm{~N}$ and then with $20 \% \mathrm{HCl}$ at $30-40^{\circ} \mathrm{C}$ to give the desired 5,11-methanomorphanthridine derivative 21, whose melting point $\left(97-99^{\circ} \mathrm{C}\right.$; lit., $\left.{ }^{5 a} 100^{\circ} \mathrm{C}\right)$ and physical data were virtually identical with the literature values. ${ }^{5 a}$

In planning the synthesis of (\pm)-pancrancine $\mathbf{1}$, the amide 24 having an oxygen functionality at the 4 -position of the cyclo-hex-2-enyl ring is needed as a radical precursor. This compound was prepared from the known (\pm)-cis-3-acetoxy-6-chlorocyclohexene 22, ${ }^{12}$ which in turn was prepared from cyclohexa-1,3diene. Thus, according to the procedure reported by Bäckvall, ${ }^{13}$ a mixture of $\mathbf{2 2}$ and 4-methoxybenzylamine was treated with bis(dibenzylideneacetone) palladium $(0)\left[\mathrm{Pd}(\mathrm{dba})_{2}\right]$ in the presence of $\mathrm{Ph}_{3} \mathrm{P}$ to give the amine 23 in 72% yield. Compound 23 was then acylated with the carboxylic acid 16 in the presence of DCC to give the amide $\mathbf{2 4}$ in 79\% yield (Scheme 6).

When the amide 24 was treated with $(\mathrm{TMS})_{3} \mathrm{SiH}$ in the presence of AIBN in boiling benzene, $\left(3 R^{*}, 3 \mathrm{a} S^{*}, 7 \mathrm{a} S^{*}\right)$-3-aryl-octahydroindol-2-one $\mathbf{2 5}$ was obtained in 84% yield as a single stereoisomer.

With the requisite octahydroindol-2-one $\mathbf{2 5}$ so conveniently assembled, we then examined transformation of $\mathbf{2 5}$ into the key

$\mathrm{Ar}=3,4$-Methylenedioxyphenyl
PMB = 4-Methoxybenzyl
Scheme 6 Reagents and conditions (and yields): i, $\mathrm{Pd}(\mathrm{dba})_{2}, \mathrm{Ph}_{3} \mathrm{P}, 4-$ methoxybenzylamine, $\mathrm{Et}_{3} \mathrm{~N}$, THF, room temp. (72\%); ii, 16, DCC, DMAP, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, room temp. (79%); iii, (TMS) 3 SiH , AIBN, benzene, reflux (84%); iv, $\mathrm{LiOH}, \mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}$, reflux (95%); v, DMSO, $(\mathrm{COCl})_{2}$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; then $\mathrm{Et}_{3} \mathrm{~N}(99 \%)$; vi, ethylene glycol, TsOH , benzene, reflux (95%); vii, AlH_{3}, THF, room temp.; viii, Cbz-Cl, benzene, reflux (75% from 7a); ix, $\mathrm{H}_{2}, 10 \% \mathrm{Pd}-\mathrm{C}$, conc. $\mathrm{HCl}, \mathrm{MeOH}$, room temp.; x, (a) $\mathrm{HCHO}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{MeOH}$, (b) $20 \% \mathrm{HCl}, \mathrm{MeOH}, 30-40^{\circ} \mathrm{C}(64 \%$ from 28).
intermediate $\mathbf{3 0}$ for the synthesis of (\pm)-pancracine $\mathbf{1}$. Hydrolysis of the acetoxy group of $\mathbf{2 5}$ with LiOH followed by Swern oxidation of the resultant alcohol 26 gave the keto lactam 8a. This compound was identical to that obtained by hydrolysis of the acetal 7a, which was one of the radical-cyclisation products from 6 (see Schemes 1 and 2). Compound $\mathbf{8 a}$ was then protected with ethylene glycol in a manner similar to that described above (see Scheme 2) to give the acetal 7a. Reduction of 7 a with AlH_{3} followed by treatment of the resultant amine 27 with Cbz-Cl gave the carbamate 28. Catalytic hydrogenolysis in the presence of conc. HCl gave the amine hydrochloride 29, which was subjected to Pictet-Spengler cyclisation in a manner similar to that described above for the preparation of 21, to give, with concomitant deprotection of the ethylene acetal,
the 5,11-methanomorphanthridine 30 in 64% yield from 28. The melting point ($125-126^{\circ} \mathrm{C}$; lit., ${ }^{5 d} 125^{\circ} \mathrm{C}$) and ${ }^{1} \mathrm{H}$ NMR spectral data of $\mathbf{3 0}$ herein obtained were identical with the literature values. ${ }^{5 d}$ Since compound 30 has already been converted into (\pm)-pancracine $1,{ }^{5 d}$ the present sequence of reactions herein described constitutes a formal total synthesis of (\pm)-pancracine.

Experimental

Mps were measured on a Yanaco MP-J3 micro melting point apparatus and are uncorrected. IR spectra were recorded on a JASCO-IR-A-100 spectrophotometer. ${ }^{1} \mathrm{H}$ NMR (60 and 300 $\mathrm{MHz})$ and ${ }^{13} \mathrm{C}$ NMR (75.4 MHz) spectra were measured on a JEOL-JNM-PMX 60 or a Varian XL-300 spectrometer for solutions in $\mathrm{CDCl}_{3} . \delta$-Values quoted are relative to tetramethylsilane, and J-values are given in Hz . Exact mass determinations (EI and FAB mass spectra) were obtained on a JEOL-SX 102A instrument. Column chromatography was performed on silica gel $60 \mathrm{PF}_{254}$ (Nacalai Tesque) under pressure.

2-(3,4-Methylenedioxyphenyl)acetic pivalic anhydride

To a stirred solution at $-78{ }^{\circ} \mathrm{C}$ containing 2-(3,4-methylenedioxyphenyl)acetic acid ($6 \mathrm{~g}, 33.3 \mathrm{mmol}$) in diethyl ether (360 cm^{3}) were added successively pivaloyl chloride ($4.02 \mathrm{~g}, 33.3$ $\mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}\left(3.37 \mathrm{~cm}^{3}, 33.3 \mathrm{mmol}\right)$. The mixture was stirred at the same temperature for 45 min and then at $0^{\circ} \mathrm{C}$ for 15 min . The precipitated salts were filtered off and the filtrate was concentrated to give 2-(3,4-methylenedioxyphenyl)acetic pivalic anhydride ($8.24 \mathrm{~g}, 94 \%$) as an oil; $\delta_{\mathrm{H}}(60 \mathrm{MHz}) 1.17(9 \mathrm{H}$, s), $3.65(2 \mathrm{H}, \mathrm{s}), 5.92(2 \mathrm{H}, \mathrm{s})$ and $6.73(3 \mathrm{H}, \mathrm{s})$. This compound was used in the next step without further purification.

N-(1,4-Dioxaspiro[4.5]dec-7-en-8-yl)- N-(4-methoxybenzyl)-2-(3,4-methylenedioxyphenyl)acetamide 5

A solution of cyclohexane-1,4-dione monoethylene acetal 4 ($2.84 \mathrm{~g}, 18.2 \mathrm{mmol}$) and 4-methoxybenzylamine ($2.09 \mathrm{~g}, 15.2$ mmol) in benzene $\left(140 \mathrm{~cm}^{3}\right)$ was heated at reflux with azeotropic removal of water for 2 h . To this mixture were added successively pyridine ($2.4 \mathrm{~g}, 30.4 \mathrm{mmol}$) and a solution of 2-(3,4-methylenedioxyphenyl)acetic pivalic anhydride $(8.02 \mathrm{~g}$, $30.4 \mathrm{mmol})$ in benzene $\left(50 \mathrm{~cm}^{3}\right)$ at room temperature. The mixture was stirred at $30-40^{\circ} \mathrm{C}$ for 2 h . After this, the reaction mixture was washed successively with $5 \% \mathrm{HCl}$, saturated aq. NaHCO_{3} and brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. The residue was chromatographed on silica gel [hexane-AcOEt (4:1)] to give 5 ($4.89 \mathrm{~g}, 77 \%$) as an oil [Found: $(\mathrm{M}+\mathrm{H})^{+}$, 438.1926. $\mathrm{C}_{25} \mathrm{H}_{28} \mathrm{NO}_{6}$ requires $M \mathrm{H}^{+}$, 438.1917]; $v_{\text {max }}\left(\mathrm{CCl}_{4}\right) /$ $\mathrm{cm}^{-1} 1640 ; \delta_{\mathrm{H}}(300 \mathrm{MHz}) 1.78(2 \mathrm{H}, \mathrm{t}, J 6.5), 2.16-1.25(4 \mathrm{H}, \mathrm{m})$, $3.57(2 \mathrm{H}, \mathrm{s}), 3.78(3 \mathrm{H}, \mathrm{s}), 3.98(4 \mathrm{H}, \mathrm{s}), 4.54(2 \mathrm{H}, \mathrm{br} \mathrm{s}), 5.08-$ $5.12(1 \mathrm{H}, \mathrm{m}), 5.92(2 \mathrm{H}, \mathrm{s}), 6.72-6.85(5 \mathrm{H}, \mathrm{m})$ and $7.18(2 \mathrm{H}, \mathrm{d}$, $J 8.6$).

N-(1,4-Dioxaspiro[4.5]dec-7-en-8-yl)- N -(4-methoxybenzyl)-2-(3,4-methylenedioxyphenyl)-2-(phenylseleno)acetamide 6

To a stirred solution at $-78^{\circ} \mathrm{C}$ containing LDA [prepared from diisopropylamine ($429 \mathrm{mg}, 4.24 \mathrm{mmol}$) and a $1.6 \mathrm{~mol} \mathrm{dm}^{-3}$ solution of butyllithium in hexane ($2.65 \mathrm{~cm}^{3}, 4.24 \mathrm{mmol}$)] was added a solution of $5(1.24 \mathrm{~g}, 2.82 \mathrm{mmol})$ in THF $\left(1 \mathrm{~cm}^{3}\right)$. The mixture was stirred at the same temperature for 30 min . HMPA ($759 \mathrm{mg}, 4.24 \mathrm{mmol}$) was added to the mixture, which was again stirred at the same temperature for 15 min . After this, benzeneselenenyl chloride ($812 \mathrm{mg}, 4.24 \mathrm{mmol}$) was added and the mixture was stirred at the same temperature for 1 h . The reaction was quenched by addition of saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}$, and the mixture was extracted with diethyl ether. The extract was washed successively with saturated aq. NaHCO_{3} and brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. The residue was chromato-
graphed on silica gel [hexane-AcOEt (3:1)] to give $6(1.08 \mathrm{~g}$, 65%) as an oil; $v_{\max }\left(\mathrm{CCl}_{4}\right) / \mathrm{cm}^{-1} 1645 ; \delta_{\mathrm{H}}(60 \mathrm{MHz}) 1.15-2.4(6$ $\mathrm{H}, \mathrm{m}), 3.72(3 \mathrm{H}, \mathrm{s}), 3.8-4.05(4 \mathrm{H}, \mathrm{m}), 4.35-4.60(2 \mathrm{H}, \mathrm{br} \mathrm{s})$, 4.7-5.0 $(1 \mathrm{H}, \mathrm{m}), 5.13(1 \mathrm{H}, \mathrm{s}), 5.86(2 \mathrm{H}, \mathrm{s})$ and 6.55-7.70 (12 H, m). This compound was used immediately in the next step.

Radical cyclisation of 6

With $\mathrm{Bu}_{3} \mathbf{S n H}$: general procedure. A solution of $\mathrm{Bu}_{3} \mathrm{SnH}$ (320 $\mathrm{mg}, 1.1 \mathrm{mmol}$) and AIBN ($17 \mathrm{mg}, 0.1 \mathrm{mmol}$) in benzene (150 cm^{3}) was added dropwise to a solution of $\mathbf{6}(592 \mathrm{mg}, 1 \mathrm{mmol})$ in boiling benzene ($73 \mathrm{~cm}^{3}$) via a syringe during 2 h , and the mixture was further refluxed for 2 h . After concentration of the reaction mixture by removal of the solvent, diethyl ether (50 $\left.\mathrm{cm}^{3}\right)$ and 8% aq. $\mathrm{KF}\left(50 \mathrm{~cm}^{3}\right)$ were added to the residue, and the whole mixture was vigorously stirred at room temperature for 1 h . The organic layer was separated, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated. The residue was chromatographed on silica gel [hexane-AcOEt (2:1)] to give a $c a .1: 1$ mixture of $\left(3 R^{*}, 3 \mathrm{a} S^{*}\right.$, $\left.7 \mathrm{a} S^{*}\right)$ - and $\left(3 R^{*}, 3 \mathrm{a} S^{*}, 7 \mathrm{a} R^{*}\right)$-5,5-(ethylenedioxy)octahydro-1-(4-methoxybenzy)-3-(3,4-methylenedioxyphenyl)indol-2-one $7 \mathbf{a}$ and $7 \mathbf{b}(360 \mathrm{mg}, 82 \%)$ as an oil. The physical data for the pure samples of compounds $7 \mathbf{a}$ and 7 b are described later.

With (TMS) ${ }_{3} \mathrm{SiH}$. Following the general procedure, compound $\mathbf{6}(165 \mathrm{mg}, 0.28 \mathrm{mmol})$ was treated with (TMS) $)_{3} \mathrm{SiH}(277$ $\mathrm{mg}, 1.11 \mathrm{mmol}$) and AIBN ($11 \mathrm{mg}, 0.07 \mathrm{mmol}$) in boiling benzene. After work-up, the crude material was chromatographed on silica gel [hexane-AcOEt (2:1)] to give a ca. 1:2 mixture of $7 \mathbf{a , b}(92 \mathrm{mg}, 75 \%)$.

$\left(3 R^{*}, 3 \mathrm{a} S^{*}, 7 \mathrm{a} S^{*}\right)$ - and ($3 R^{*}, 3 \mathrm{a} S^{*}, 7 \mathrm{a} R^{*}$)-Hexahydro-1-(4-methoxybenzyl)-3-(3,4-methylenedioxyphenyl)indole-2,5(3H)dione 8 a and 8 b

A solution of the mixture of $\mathbf{7 a}$ and $\mathbf{7 b}(353 \mathrm{mg}, 0.81 \mathrm{mmol})$ in acetone ($13 \mathrm{~cm}^{3}$) and $5 \% \mathrm{HCl}\left(9 \mathrm{~cm}^{3}\right)$ was heated at reflux for 1 h. After this, the reaction mixture was poured into brine (20 cm^{3}) and the mixture was extracted with AcOEt. The extract was dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated, and the residue was chromatographed on silica gel [hexane-AcOEt (2:1)]. The first eluent gave 8b ($148 \mathrm{mg}, 47 \%$) as an oil [Found: $(\mathrm{M}+\mathrm{H})^{+}$, 394.1650. $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{NO}_{5}$ requires $M \mathrm{H}^{+}$, 394.1655]; $v_{\max }\left(\mathrm{CHCl}_{3}\right) /$ $\mathrm{cm}^{-1} 1685 ; \delta_{\mathrm{H}}(300 \mathrm{MHz}) 1.55-1.70(1 \mathrm{H}, \mathrm{m}), 2.00-2.15(1 \mathrm{H}$, m), 2.22-2.40 ($3 \mathrm{H}, \mathrm{m}$), 2.45-2.60 ($2 \mathrm{H}, \mathrm{m}$), $3.27(1 \mathrm{H}, \mathrm{d}, J 11.8$, 3-H), 3.32-3.36 ($1 \mathrm{H}, \mathrm{m}, 7 \mathrm{a}-\mathrm{H}), 3.80(3 \mathrm{H}, \mathrm{s}), 4.20(1 \mathrm{H}, \mathrm{d}$, J 14.9), $4.87(1 \mathrm{H}, \mathrm{d}, J 14.9), 5.94(2 \mathrm{H}, \mathrm{s}), 6.61-6.68(2 \mathrm{H}, \mathrm{m})$, $6.78(1 \mathrm{H}, \mathrm{d}, J 7.9), 6.87(2 \mathrm{H}, \mathrm{d}, J 8.6)$ and $7.22(2 \mathrm{H}, \mathrm{d}, J 8.6)$; $\delta_{\mathrm{C}} 29.0,39.0,42.7,44.2,48.8,54.4,55.2,58.4,101.0,108.4$, $108.5,114.1,121.9,128.6,129.2,129.7,147.0,148.0,159.0$, 175.3 and 206.8. The second eluent gave $\mathbf{8 a}(170 \mathrm{mg}, 54 \%)$, mp $103-104{ }^{\circ} \mathrm{C}$ (from hexane-AcOEt) (Found: C, $70.0 ; \mathrm{H}, 5.9 ; \mathrm{N}$, 3.5. $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{NO}_{5}$ requires C, $\left.70.2 ; \mathrm{H}, 5.9 ; \mathrm{N}, 3.6 \%\right) ; v_{\max }\left(\mathrm{CHCl}_{3}\right) /$ $\mathrm{cm}^{-1} 1705$ and $1675 ; \delta_{\mathrm{H}}(300 \mathrm{MHz}) 1.90-2.18\left(2 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}_{2}\right)$, 2.24-2.34 ($2 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}_{2}$), $2.47(1 \mathrm{H}, \mathrm{dd}, J 15.9$ and 5.6 , one of $\left.4-\mathrm{H}_{2}\right), 2.55\left(1 \mathrm{H}, \mathrm{dd}, J 15.9\right.$ and 6.3 , one of 4- H_{2}), 2.67-2.79 (1 $\mathrm{H}, \mathrm{m}, 3 \mathrm{a}-\mathrm{H}), 3.29(1 \mathrm{H}, \mathrm{d}, J 8.4,3-\mathrm{H}), 3.78-3.86(1 \mathrm{H}, \mathrm{m}, 7 \mathrm{a}-\mathrm{H})$, $3.82(3 \mathrm{H}, \mathrm{s}), 4.00(1 \mathrm{H}, \mathrm{d}, J 14.8), 5.03(1 \mathrm{H}, \mathrm{d}, J 14.8), 5.94$ (2 $\mathrm{H}, \mathrm{s}), 6.59-6.63(2 \mathrm{H}, \mathrm{m}), 6.77(1 \mathrm{H}, \mathrm{d}, J 8.4), 6.90(2 \mathrm{H}, \mathrm{d}, J 8.6)$ and $7.24(2 \mathrm{H}, \mathrm{d}, J 8.6) ; \delta_{\mathrm{C}} 24.4,35.5,40.1,41.1,44.2,53.0,54.2$, 55.2, 101.1, 108.1, 108.5, 114.2, 121.6, 128.3, 129.4, 132.2, 147.0, 148.1, 159.2, 173.4 and 209.6.

($\left.3 R^{*}, 3 \mathrm{a} S^{*}, 7 \mathrm{a} S^{*}\right)$-5,5-(Ethylenedioxy)octahydro-1-(4-methoxy-benzyl)-3-(3,4-methylenedioxyphenyl)indol-2-one 7a

A solution of $\mathbf{8 a}$ ($790 \mathrm{mg}, 2.01 \mathrm{mmol}$), ethylene glycol (249 mg , 4.02 mmol) and toluene-4-sulfonic acid monohydrate (TsOH) $(76 \mathrm{mg}, 0.4 \mathrm{mmol})$ in benzene $\left(50 \mathrm{~cm}^{3}\right)$ was heated at reflux for 2 h with azeotropic removal of water. Water was added to the reaction mixture and the whole was extracted with benzene.

The extract was dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated, and the residue was chromatographed on silica gel [hexane-AcOEt (1:1)] to give $7 \mathrm{a}(836 \mathrm{mg}, 95 \%)$, $\mathrm{mp} 149-150^{\circ} \mathrm{C}$ (from hexane-AcOEt) (Found: C, 68.6; H, 6.3; N, 3.4. $\mathrm{C}_{25} \mathrm{H}_{27} \mathrm{NO}_{6}$ requires C, $68.6 ; \mathrm{H}$, $6.2 ; \mathrm{N}, 3.2 \%) ; v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1670 ; \delta_{\mathrm{H}}(300 \mathrm{MHz}) 1.43-1.84$ $(5 \mathrm{H}, \mathrm{m}), 1.95-2.05(1 \mathrm{H}, \mathrm{m}), 2.35-2.48(1 \mathrm{H}, \mathrm{m}), 3.40(1 \mathrm{H}, \mathrm{dt}$, $J 9.3$ and $6.5,7 \mathrm{a}-\mathrm{H}), 3.82(3 \mathrm{H}, \mathrm{s}), 3.90-4.02(6 \mathrm{H}, \mathrm{m}), 4.98(1 \mathrm{H}$, d, $J 15.0), 5.95(2 \mathrm{H}, \mathrm{s}), 6.64-6.69(2 \mathrm{H}, \mathrm{m}), 6.79(1 \mathrm{H}, \mathrm{d}, J 7.7)$, $6.88(2 \mathrm{H}, \mathrm{d}, J 8.6)$ and $7.22(2 \mathrm{H}, \mathrm{d}, J 8.6) ; \delta_{\mathrm{C}} 24.9,31.3,32.8$, $42.9,44.0,51.3,53.5,55.3,64.0,64.5,100.9,108.1,108.4,109.1$, 114.1, 122.3, 129.0, 129.4, 132.0, 146.6, 147.9, 159.1 and 174.5 .

$\left(3 R^{*}, 3 \mathrm{aS} S^{*}, 7 \mathrm{a} R^{*}\right)-5,5$-(Ethylenedioxy)octahydro-1-(4-methoxy-benzyl)-3-(3,4-methylenedioxyphenyl)indol-2-one 7b

Using a procedure similar to that described above for 7a, compound $\mathbf{8 b}(959 \mathrm{mg}, 2.41 \mathrm{mmol})$ was treated with ethylene glycol ($300 \mathrm{mg}, 4.83 \mathrm{mmol}$) to give $7 \mathbf{b}(1.03 \mathrm{~g}, 97 \%), \mathrm{mp} 133-134^{\circ} \mathrm{C}$ (from diethyl ether) (Found: C, 68.55; H, 6.3; N, 3.4\%); $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1665 ; \delta_{\mathrm{H}}(300 \mathrm{MHz}) 1.44-1.62(3 \mathrm{H}, \mathrm{m}), 1.76-$ $1.88(2 \mathrm{H}, \mathrm{m}), 1.98-2.16(2 \mathrm{H}, \mathrm{m}), 2.88-2.97(1 \mathrm{H}, \mathrm{m}, 7 \mathrm{a}-\mathrm{H})$, $3.14(1 \mathrm{H}, \mathrm{d}, J 12.3,3-\mathrm{H}), 3.80(3 \mathrm{H}, \mathrm{s}), 3.84-3.93(4 \mathrm{H}, \mathrm{m}), 4.24$ ($1 \mathrm{H}, \mathrm{d}, J 14.9$), $4.72(1 \mathrm{H}, \mathrm{d}, J 14.9), 5.95(2 \mathrm{H}, \mathrm{s}), 6.66-6.72$ $(2 \mathrm{H}, \mathrm{m}), 6.79(1 \mathrm{H}, \mathrm{d}, J 7.8), 6.86(2 \mathrm{H}, \mathrm{d}, J 8.6)$ and $7.20(2 \mathrm{H}$, d, J 8.6); $\delta_{\mathrm{C}} 26.7,33.7,36.5,44.2,47.5,54.1,55.2,60.0,64.3$, $64.5,100.9,108.3,108.9,114.0,122.1,129.2,129.3,130.6$, 146.7, 147.9, 158.9 and 175.9.

N-(Cyclohex-1-enyl)- N-(4-methoxybenzyl)-2-(3,4-methylenedioxyphenyl)acetamide 9

Using a procedure similar to that described above for the preparation of $\mathbf{5}$, cyclohexanone ($1.76 \mathrm{~g}, 18 \mathrm{mmol}$) was treated with 4-methoxybenzylamine ($2.05 \mathrm{~g}, 15 \mathrm{mmol}$), and the resultant imine was then treated with 2-(3,4-methylenedioxyphenyl)acetic pivalic anhydride ($7.9 \mathrm{~g}, 29.9 \mathrm{mmol}$) to give $9(3.98 \mathrm{~g}, 59 \%)$ as an oil [Found: $(\mathrm{M}+\mathrm{H})^{+}$, 380.1855. $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{NO}_{4}$ requires $M \mathrm{H}^{+}$, 380.1862]; $v_{\max }\left(\mathrm{CCl}_{4}\right) / \mathrm{cm}^{-1} 1640 ; \delta_{\mathrm{H}}(300 \mathrm{MHz}) 1.48-1.72(4 \mathrm{H}$, $\mathrm{m}), 1.82-2.06(4 \mathrm{H}, \mathrm{m}), 3.57(2 \mathrm{H}, \mathrm{s}), 3.78(3 \mathrm{H}, \mathrm{s}), 4.53(2 \mathrm{H}, \mathrm{br}$ s), $5.27-5.31(1 \mathrm{H}, \mathrm{m}), 5.92(2 \mathrm{H}, \mathrm{s}), 6.65-6.82(5 \mathrm{H}, \mathrm{m})$ and 7.18 ($2 \mathrm{H}, \mathrm{d}, J 8.6$).

N-(Cyclohex-1-eny1)- N-(4-methoxybenzyl)-2-(3,4-methylene-dioxyphenyl)-2-(phenylseleno)acetamide 10

Using a procedure similar to that described above for the preparation of $\mathbf{6}$, compound $9(3.98 \mathrm{~g}, 10.5 \mathrm{mmol})$ was treated successively with LDA (15.8 mmol) and benzeneselenenyl chloride $(3.0 \mathrm{~g}, 15.8 \mathrm{mmol})$ to give $\mathbf{1 0}(2.31 \mathrm{~g}, 42 \%)$ as an oil; $v_{\max }\left(\mathrm{CCl}_{4}\right) /$ $\mathrm{cm}^{-1} 1650 ; \delta_{\mathrm{H}}(60 \mathrm{MHz}) 1.3-2.0(8 \mathrm{H}, \mathrm{m}), 3.73(3 \mathrm{H}, \mathrm{s}), 4.3-4.6$ $(2 \mathrm{H}, \mathrm{br}), 4.7-5.0(1 \mathrm{H}, \mathrm{m}), 5.06(1 \mathrm{H}, \mathrm{s}), 5.87(2 \mathrm{H}, \mathrm{s})$ and $6.5-$ $7.5(12 \mathrm{H}, \mathrm{m})$. This compound was used immediately in the next step.

Radical cyclisation of 10

With $\mathrm{Bu}_{3} \mathrm{SnH}$. Following the general procedure, compound $10(534 \mathrm{mg}, 1 \mathrm{mmol})$ was treated with $\mathrm{Bu}_{3} \mathrm{SnH}(296 \mathrm{mg}, 1.1$ mmol) and AIBN ($16 \mathrm{mg}, 0.1 \mathrm{mmol}$). After work-up, the crude material was chromatographed on silica gel [hexane-AcOEt (5:1)]. The first eluent gave ($3 R^{*}, 3 \mathrm{a} S^{*}, 7 \mathrm{a} R^{*}$)-octahydro-1-(4-methoxybenzyl)-3-(3,4-methylenedioxyphenyl)indol-2-one 11b $(80 \mathrm{mg}, 21 \%)$ as an oil [Found: $(\mathrm{M}+\mathrm{H})^{+}, 380.1854 . \mathrm{C}_{23} \mathrm{H}_{26}{ }^{-}$ NO_{4} requires $M \mathrm{H}^{+}$, 380.1862]; $v_{\max }\left(\mathrm{CCl}_{4}\right) / \mathrm{cm}^{-1} 1690 ; \delta_{\mathrm{H}}(300$ MHz) 1.15-1.35 ($4 \mathrm{H}, \mathrm{m}$), 1.60-1.90 ($4 \mathrm{H}, \mathrm{m}$), 2.04-2.12 (1 H , m), 2.84-2.95 ($1 \mathrm{H}, \mathrm{m}, 7 \mathrm{a}-\mathrm{H}$), $3.12(1 \mathrm{H}, \mathrm{d}, J 12.2,3-\mathrm{H}), 3.79$ $(3 \mathrm{H}, \mathrm{s}), 4.18(1 \mathrm{H}, \mathrm{d}, J 14.8), 4.75(1 \mathrm{H}, \mathrm{d}, J 14.8), 5.93(2 \mathrm{H}, \mathrm{s})$, 6.65-6.72 ($2 \mathrm{H}, \mathrm{m}$), $6.79(1 \mathrm{H}, \mathrm{d}, J 7.8), 6.85(2 \mathrm{H}, \mathrm{d}, J 8.7)$ and 7.20 ($2 \mathrm{H}, \mathrm{d}, J 8.7$); $\delta_{\mathrm{C}} 21.1,22.3,24.8,27.8,42.0,43.7,50.5$, $54.3,55.2,100.9,108.2,108.8,113.9,122.1,129.0,129.3,132.0$, $146.5,147.8,158.9$ and 174.4. The second eluent gave ($3 R^{*}$, $\left.3 \mathrm{a} S^{*}, 7 \mathrm{a} S^{*}\right)$-octahydro-1-(4-methoxybenzyl)-3-(3,4-methylene-
dioxyphenyl)indol-2-one 11a ($64 \mathrm{mg}, 17 \%$), $\mathrm{mp} 148.5-150{ }^{\circ} \mathrm{C}$ (from hexane-AcOEt) (Found: C, 72.5; H, 7.0; N, 3.3. $\mathrm{C}_{23} \mathrm{H}_{25^{-}}$ NO_{4} requires C, $72.8 ; \mathrm{H}, 6.6 ; \mathrm{N}, 3.7 \%$); $v_{\max }\left(\mathrm{CCl}_{4}\right) / \mathrm{cm}^{-1} 1690$; $\delta_{\mathrm{H}}(300 \mathrm{MHz}) 1.10-1.70(7 \mathrm{H}, \mathrm{m}), 1.93-2.05(1 \mathrm{H}, \mathrm{m}), 2.21-2.33$ $(1 \mathrm{H}, \mathrm{m}), 3.35(1 \mathrm{H}, \mathrm{dt}, J 9.9$ and 6.4$), 3.47(1 \mathrm{H}, \mathrm{d}, J 11.2), 3.80$ ($3 \mathrm{H}, \mathrm{s}$), $3.95(1 \mathrm{H}, \mathrm{d}, J 14.8), 4.98(1 \mathrm{H}, \mathrm{d}, J 14.8), 5.92(2 \mathrm{H}, \mathrm{s})$, 6.63-6.70($2 \mathrm{H}, \mathrm{m}$), $6.78(1 \mathrm{H}, \mathrm{d}, J 7.8), 6.88(2 \mathrm{H}, \mathrm{d}, J 8.5)$ and 7.22 ($2 \mathrm{H}, \mathrm{d}, J 8.5$); $\delta_{\mathrm{C}} 21.1,22.3,24.8,27.8,42.0,43.7,50.5$, 54.3, 55.2, 100.9, 108.2, 108.8, 113.9, 122.1, 129.0, 129.3, 132.0, 146.5, 147.8, 158.9 and 174.4.

With (TMS) $\mathbf{3}_{3} \mathbf{S i H}$. Following the general procedure, compound $10(100 \mathrm{mg}, 0.19 \mathrm{mmol})$ was treated with $(\mathrm{TMS})_{3} \mathrm{SiH}$ ($186 \mathrm{mg}, 0.75 \mathrm{mmol}$) and AIBN ($8 \mathrm{mg}, 0.05 \mathrm{mmol}$) in boiling benzene. After work-up, the crude material was chromatographed on silica gel [hexane-AcOEt (3:1)]. The first eluent gave the reduction product $9(10 \mathrm{mg}, 14 \%)$. The second eluent gave 11b ($28 \mathrm{mg}, 39 \%$). The third eluent gave 11a ($15 \mathrm{mg}, 21 \%$).

2-Chloro- N -(cyclohex-2-enyl)- N -(4-methoxybenzyl)-2phenylacetamide 13

To a stirred solution of 3-bromocyclohexene ($1.13 \mathrm{~g}, 7 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(10 \mathrm{~cm}^{3}\right)$ was added 4-methoxybenzylamine ($1.92 \mathrm{~g}, 14$ mmol), and the mixture was stirred at room temperature for 5 h . The reaction mixture was washed successively with saturated aq. NaHCO_{3} and brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated to give quantitatively N-(cyclohex-2-enyl)-4-methoxybenzylamine 12 as an oil $\left[\delta_{\mathrm{H}}(60 \mathrm{MHz}) 1.30-2.10(6 \mathrm{H}, \mathrm{m}), 2.90-3.40(1 \mathrm{H}\right.$, m), 3.55-3.75 ($1 \mathrm{H}, \mathrm{m}$), $3.77(3 \mathrm{H}, \mathrm{s}), 5.73(2 \mathrm{H}, \mathrm{s}), 6.77(2 \mathrm{H}, \mathrm{d}$, $J 8.5)$ and $7.20(2 \mathrm{H}, \mathrm{d}, J 8.5)]$.

To a stirred solution at $0^{\circ} \mathrm{C}$ containing $12(969 \mathrm{mg}, 4.56$ mmol) and triethylamine ($508 \mathrm{mg}, 5.02 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(19$ cm^{3}) was added dropwise a solution of 2-chloro-2-phenylacetyl chloride ($949 \mathrm{mg}, 5.02 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(6 \mathrm{~cm}^{3}\right)$. The mixture was stirred at room temperature overnight, then was washed with water, and the organic phase was dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. The residue was chromatographed on silica gel [hexane-AcOEt (6:1)] to give a diastereoisomeric mixture of $\mathbf{1 3}$ $(101 \mathrm{~g}, 65 \%)$ as an oil [Found: $(\mathrm{M}+\mathrm{H})^{+}, 369.1488 . \mathrm{C}_{22} \mathrm{H}_{24^{-}}$ ClNO_{2} requires $\left.M \mathrm{H}^{+}, 369.1495\right] ; v_{\max }\left(\mathrm{CCl}_{4}\right) / \mathrm{cm}^{-1} 1660 ; \delta_{\mathrm{H}}(300$ $\mathrm{MHz}) 1.30-2.10(6 \mathrm{H}, \mathrm{m}), 3.78(3 \mathrm{H} \times 1 / 5, \mathrm{~s}), 3.83(3 \mathrm{H} \times 4 / 5$, s), $4.24-4.68(2.4 \mathrm{H}, \mathrm{m}), 5.31-5.40(2.4 \mathrm{H}, \mathrm{m}), 5.81-5.93(1.3 \mathrm{H}$, m) and 6.79-7.58 ($9 \mathrm{H}, \mathrm{m}$).

Radical cyclisation of 13

With $\mathrm{Bu}_{3} \mathbf{S n H}$. Following the general procedure, compound $13(327 \mathrm{mg}, 0.88 \mathrm{mmol})$ was treated with $\mathrm{Bu}_{3} \mathrm{SnH}(386 \mathrm{mg}, 1.33$ mmol) and AIBN ($22 \mathrm{mg}, 0.13 \mathrm{mmol}$). After work-up, the crude material was chromatographed on silica gel [hexane$\operatorname{AcOEt}(4: 1)$] to give $\left(3 R^{*}, 3 \mathrm{a} S^{*}, 7 \mathrm{a} S^{*}\right)$-octahydro-1-(4-methoxy-benzyl)-3-phenylindol-2-one $\mathbf{1 4}$ ($238 \mathrm{mg}, 81 \%$) as an oil [Found: $(\mathrm{M}+\mathrm{H})^{+}$, 335.1890. $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{NO}_{2}$ requires MH^{+}, 335.1885]; $v_{\max }\left(\mathrm{CCl}_{4}\right) / \mathrm{cm}^{-1} 1685 ; \delta_{\mathrm{H}}(300 \mathrm{MHz}) 1.07-1.80(7 \mathrm{H}, \mathrm{m}), 1.93-$ $2.03(1 \mathrm{H}, \mathrm{m}), 2.28-2.38(1 \mathrm{H}, \mathrm{m}, 3 \mathrm{a}-\mathrm{H}), 3.38(1 \mathrm{H}, \mathrm{dt}, J 9.8$ and $6.1,7 \mathrm{a}-\mathrm{H}), 3.54(1 \mathrm{H}, \mathrm{d}, J 10.9,3-\mathrm{H}), 3.81(3 \mathrm{H}, \mathrm{s}), 3.98(1 \mathrm{H}, \mathrm{d}$, $J 14.9), 5.00(1 \mathrm{H}, \mathrm{d}, J 14.9), 6.88(1 \mathrm{H}, \mathrm{d}, J 8.7)$ and $7.18-7.38$ $(7 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{C}} 21.1,22.4,25.0,27.9,42.1,43.8,51.0,54.5,55.2$, $114.0,126.9,128.6,128.7,129.1,129.4,138.3,159.0$ and 174.5.

With (TMS) ${ }_{3} \mathbf{S i H}$. Following the general procedure, compound $13(180 \mathrm{mg}, 0.49 \mathrm{mmol})$ was treated with $(\mathrm{TMS})_{3} \mathrm{SiH}$ ($484 \mathrm{mg}, 1.95 \mathrm{mmol}$) and AIBN ($20 \mathrm{mg}, 0.12 \mathrm{mmol}$) in boiling benzene. After work-up, the crude material was chromatographed on silica gel [hexane-AcOEt ($4: 1$)] to give $\mathbf{1 4}$ (139 mg , 85%).

Ethyl 2-(3,4-methylenedioxyphenyl)-2-(phenylthio)acetate 15

To a stirred solution at $0^{\circ} \mathrm{C}$ containing ethyl 2-chloro-2-
(phenylthio)acetate ${ }^{10}$ ($3.35 \mathrm{~g}, 16.7 \mathrm{mmol}$) and 1,2-methylenedioxybenzene ($2.47 \mathrm{~g}, 20.2 \mathrm{mmol}$) in CHCl_{3} was added TiCl_{4} ($3.17 \mathrm{~g}, 16.7 \mathrm{mmol}$). The mixture was stirred at room temperature for 30 min . Water was added and the mixture was extracted with CHCl_{3}. The extract was dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. The residue was chromatographed on silica gel [hexane-AcOEt (15:1)] to give 15 ($3.59 \mathrm{~g}, 75 \%$) as an oil (Found: C, 64.2; H, 5.0. $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{O}_{4} \mathrm{~S}$ requires C, 64.5; H, 5.1\%); $v_{\max }\left(\mathrm{CCl}_{4}\right) / \mathrm{cm}^{-1} 1735 ; \delta_{\mathrm{H}}(300 \mathrm{MHz}) 1.16(3 \mathrm{H}, \mathrm{t}, J 7.1), 4.04-$ $4.17(2 \mathrm{H}, \mathrm{m}), 4.83(1 \mathrm{H}, \mathrm{s}), 5.95(2 \mathrm{H}, \mathrm{s}), 6.72(1 \mathrm{H}, \mathrm{d}, J 8.0)$, $6.85(1 \mathrm{H}, \mathrm{dd}, J 8.0$ and 1.8$), 7.05(1 \mathrm{H}, \mathrm{d}, J 1.8)$ and $7.24-7.42$ ($5 \mathrm{H}, \mathrm{m}$).

2-(3,4-Methylenedioxyphenyl)-2-(phenylthio)acetic acid 16

To a stirred solution at room temperature containing KOH (425 $\mathrm{mg})$ in $\mathrm{EtOH}\left(10 \mathrm{~cm}^{3}\right)$ was added $\mathbf{1 5}(2 \mathrm{~g}, 6.32 \mathrm{mmol})$, and the mixture was heated at reflux for 5 h . After EtOH had been evaporated off, the residue was poured into water, and the mixture was acidified with $10 \% \mathrm{HCl}$. The mixture was extracted with AcOEt , and the extract was dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated to give 16 in almost quantitative yield, $\mathrm{mp} \mathrm{118-119}{ }^{\circ} \mathrm{C}$ (Found: C, 62.5; H, 4.2. $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{O}_{4} \mathrm{~S}$ requires C, $62.5 ; \mathrm{H}, 4.2 \%$); $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1710 ; \delta_{\mathrm{H}}(300 \mathrm{MHz}) 4.89(1 \mathrm{H}, \mathrm{s}), 5.96(2 \mathrm{H}$, s), $6.72(1 \mathrm{H}, \mathrm{d}, J 8.0), 6.84(1 \mathrm{H}, \mathrm{dd}, J 8.1$ and 1.7$), 7.01(1 \mathrm{H}, \mathrm{d}$, $J 1.7)$ and $7.25-7.47(5 \mathrm{H}, \mathrm{m})$ (the signal due to the carboxy group was not detected).

N-(Cyclohex-2-enyl)- N-(4-methoxybenzyl)-2-(3,4-methylene-dioxyphenyl)-2-(phenylthio)acetamide 17

To a stirred solution at room temperature containing the acid $16(182 \mathrm{mg}, 0.6 \mathrm{mmol})$ and the amine $12(130 \mathrm{mg}, 0.6 \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(5 \mathrm{~cm}^{3}\right)$ were added successively 4 -(dimethylamino)pyridine (DMAP) ($7 \mathrm{mg}, 0.06 \mathrm{mmol}$) and DCC ($124 \mathrm{mg}, 0.6$ $\mathrm{mmol})$. The mixture was stirred at room temperature for 5 h . The precipitates were removed by filtration, and the filtrate was washed successively with saturated aq. NaHCO_{3} and brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. The residue was chromatographed on silica gel [hexane-AcOEt (3:1)] to give 17 (235 mg , 78%) as an oil (Found: C, 70.9; H, 6.3; N, 2.6. $\mathrm{C}_{29} \mathrm{H}_{29} \mathrm{NO}_{4} \mathrm{~S}$ requires C, $71.3 ; \mathrm{H}, 6.2 ; \mathrm{N}, 2.9 \%) ; v_{\max }\left(\mathrm{CCl}_{4}\right) / \mathrm{cm}^{-1} 1635 ; \delta_{\mathrm{H}}(300$ MHz) 1.19-2.05 ($6 \mathrm{H}, \mathrm{m}$), 3.78, 3.79, 3.83 (total 3 H , all s), 4.17-4.37 ($2 \mathrm{H}, \mathrm{m}$), 4.72, 5.18 (total 1 H , both d, $J 1.6$), $5.27-$ $5.44(1.7 \mathrm{H}, \mathrm{m}), 5.80-5.97(2.7 \mathrm{H}, \mathrm{m}), 6.35-6.40(0.6 \mathrm{H}, \mathrm{m})$, $6.57-7.37(12 \mathrm{H}, \mathrm{m})$.

Radical cyclisation of 17

With $\mathrm{Bu}_{3} \mathbf{S n H}$. Following the general procedure, compound $17(1.0 \mathrm{~g}, 2.05 \mathrm{mmol})$ was treated with $\mathrm{Bu}_{3} \mathrm{SnH}(696 \mathrm{mg}, 2.39$ mmol) and AIBN ($39 \mathrm{mg}, 0.24 \mathrm{mmol}$) in boiling benzene. After work-up, the crude material was chromatographed on silica gel [hexane-AcOEt (4:1)] to give 11a ($603 \mathrm{mg}, 78 \%$), whose physical data were identical with those of an authentic sample prepared by radical cyclisation of $\mathbf{1 0}$.

With (TMS) $\mathbf{3}_{3} \mathbf{S i H}$. Following the general procedure, compound $17(513 \mathrm{mg}, 1.05 \mathrm{mmol})$ was treated with $(\mathrm{TMS})_{3} \mathrm{SiH}$ ($785 \mathrm{mg}, 3.16 \mathrm{mmol}$) and AIBN ($43 \mathrm{mg}, 0.26 \mathrm{mmol}$) in boiling benzene. After work-up, the crude material was chromatographed on silica gel [hexane-AcOEt (4:1)] to give 11a (338 mg , 85%).

($3 R^{*}, 3 \mathrm{aS} S^{*}, 7 \mathrm{a} S^{*}$)-Octahydro-1-(4-methoxybenzyl)-3-(3,4methylenedioxyphenyl)indole 18

To a stirred suspension at $-20^{\circ} \mathrm{C}$ containing $\mathrm{LiAlH}_{4}(480 \mathrm{mg}$, $12.65 \mathrm{mmol})$ in THF $\left(30 \mathrm{~cm}^{3}\right)$ was added slowly $\mathrm{AlCl}_{3}(1.69 \mathrm{~g}$, 12.65 mmol). The mixture was stirred at room temperature for 30 min . To this mixture containing AlH_{3} was added dropwise a solution of $\mathbf{1 7}(300 \mathrm{mg}, 0.79 \mathrm{mmol})$, and the mixture was stirred
at the same temperature for 1 h . The reaction was quenched by addition of $5 \% \mathrm{aq} . \mathrm{NH}_{3}$, and the precipitates were removed by filtration. The filtrate was washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated to give $\mathbf{1 8}$ ($270 \mathrm{mg}, 93 \%$) as an oil (Found: $\mathrm{M}^{+}, 365.2000 . \mathrm{C}_{23} \mathrm{H}_{27} \mathrm{NO}_{3}$ requires $\left.M, 365.1991\right) ; \delta_{\mathrm{H}}(300 \mathrm{MHz})$ 1.18-1.70 ($8 \mathrm{H}, \mathrm{m}$), 2.08-2.18 ($1 \mathrm{H}, \mathrm{m}, 3 \mathrm{a}-\mathrm{H}), 2.45(1 \mathrm{H}$, dd, $J 10.0$ and 7.8, one of $2-\mathrm{H}_{2}$), 2.83-2.98 ($2 \mathrm{H}, \mathrm{m}, 3-, 7 \mathrm{a}-\mathrm{H}$), 3.19 $\left(1 \mathrm{H}, \mathrm{dd}, J 10.0\right.$ and 8.6 , one of $\left.2-\mathrm{H}_{2}\right), 3.43(1 \mathrm{H}, \mathrm{d}, J 12.6$, one of ArCH_{2}), $3.79(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.82(1 \mathrm{H}, \mathrm{d}, J 12.6$, one of $\left.\mathrm{ArCH}_{2}\right), 5.90\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{O}\right), 6.61-6.77(3 \mathrm{H}, \mathrm{ArH}), 6.85$ $(2 \mathrm{H}, \mathrm{d}, J 8.7, \mathrm{ArH})$ and $7.27(2 \mathrm{H}, \mathrm{d}, J 8.7, \mathrm{ArH})$. This compound was used immediately in the next step without further purification.

($3 R^{*}, 3 \mathrm{a} S^{*}, 7 \mathrm{a} S^{*}$)-1-Benzyloxycarbonyloctahydro-3-(3,4methylenedioxyphenyl)indole 19

To a solution heated at reflux containing $\mathbf{1 8}(250 \mathrm{mg}, 0.68$ mmol) in benzene ($8 \mathrm{~cm}^{3}$) was added dropwise a solution of benzyloxycarbonyl chloride (Cbz-Cl) ($175 \mathrm{mg}, 1.03 \mathrm{mmol}$) in benzene $\left(3 \mathrm{~cm}^{3}\right)$. The mixture was further heated at reflux for 2 h . After this, the reaction mixture was washed successively with dil. HCl and water, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. The residue was chromatographed on silica gel [hexane-AcOEt (8:1)] to give $\mathbf{1 9}$ ($231 \mathrm{mg}, 90 \%$) as an oil (Found: $\mathrm{M}^{+}, 379.1778$. $\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{NO}_{4}$ requires $M, 379.1783$); $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1685$; $\delta_{\mathrm{H}}(300 \mathrm{MHz}) 1.13-1.75(7 \mathrm{H}, \mathrm{m}), 2.04-2.32(2 \mathrm{H}, \mathrm{m}), 3.24-3.50$ $(2 \mathrm{H}, \mathrm{m}), 3.75-4.04(2 \mathrm{H}, \mathrm{m}), 5.10-5.20(2 \mathrm{H}, \mathrm{m}), 5.93(2 \mathrm{H}, \mathrm{s})$, 6.64-6.80 $(3 \mathrm{H}, \mathrm{m})$ and $7.25-7.45(5 \mathrm{H}, \mathrm{m})$.

$\left(4 \mathrm{a} S^{*}, 11 R^{*}, 11 \mathrm{a} S^{*}\right)$-8,9-Methylenedioxy-5,11-methanomorphanthridine 21

To a solution of $\mathbf{1 9}(199 \mathrm{mg}, 0.52 \mathrm{mmol})$ in $\mathrm{MeOH}\left(15 \mathrm{~cm}^{3}\right)$ containing conc. $\mathrm{HCl}\left(0.05 \mathrm{~cm}^{3}\right)$ was added $10 \% \mathrm{Pd}$ on carbon (52 mg), and the mixture was stirred under a hydrogen atmosphere at room temperature for 15 h . The inorganic materials were filtered off, and the filtrate was concentrated to give quantitatively the amine hydrochloride 20, which was then dissolved in $\mathrm{MeOH}\left(1.6 \mathrm{~cm}^{3}\right)$. To this mixture were added 36% formalin $\left(1.6 \mathrm{~cm}^{3}, 20.8 \mathrm{mmol}\right)$ and $\mathrm{Et}_{3} \mathrm{~N}(84 \mathrm{mg}, 0.83 \mathrm{mmol})$, and the mixture was stirred at room temperature for 15 min . The reaction mixture was extracted with CHCl_{3}, and the extract was dried $\left(\mathrm{Na}_{2} \mathrm{CO}_{3}\right)$ and concentrated. After this, $\mathrm{MeOH}\left(2 \mathrm{~cm}^{3}\right)$ and $20 \% \mathrm{HCl}\left(35 \mathrm{~cm}^{3}\right)$ were added to the residue, and the mixture was stirred at $30-40^{\circ} \mathrm{C}$ overnight. The reaction mixture was made alkaline with 30% aq. NH_{3}, and the mixture was extracted with CHCl_{3}. The extract was dried $\left(\mathrm{Na}_{2} \mathrm{CO}_{3}\right)$ and concentrated, and the residue was chromatographed on silica gel [$\left.\mathrm{CHCl}_{3}-\mathrm{MeOH}(20: 1)\right]$ to give 21 ($51 \mathrm{mg}, 47 \%$ based on 19), mp 97-99 ${ }^{\circ} \mathrm{C}$ (from hexane-AcOEt) (lit., ${ }^{5 a} 100^{\circ} \mathrm{C}$); $\delta_{\mathrm{H}}(300$ MHz) $1.1-1.6(7 \mathrm{H}, \mathrm{m}), 1.66-1.77(1 \mathrm{H}, \mathrm{m}), 2.12-2.23(1 \mathrm{H}, \mathrm{m}$, $11 \mathrm{a}-\mathrm{H}), 2.53(1 \mathrm{H}, \mathrm{d}, J 2.7,11-\mathrm{H}), 2.87(1 \mathrm{H}, \mathrm{d}, J 11.2$, one of $\left.12-\mathrm{H}_{2}\right), 3.00(1 \mathrm{H}, \mathrm{dt}, J 10.9$ and $7.3,4 \mathrm{a}-\mathrm{H}), 3.12(1 \mathrm{H}, \mathrm{dd}, J 11.2$ and 2.7 one of $\left.12-\mathrm{H}_{2}\right), 3.71\left(1 \mathrm{H}, \mathrm{d}, J 16.6\right.$, one of $\left.6-\mathrm{H}_{2}\right), 4.27$ $\left(1 \mathrm{H}, \mathrm{d}, J 16.6\right.$, one of $\left.6-\mathrm{H}_{2}\right), 5.81\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{O}\right), 6.39(1 \mathrm{H}, \mathrm{s}$, $\mathrm{ArH})$ and $6.44(1 \mathrm{H}, \mathrm{s}, \mathrm{ArH}) ; \delta_{\mathrm{C}} 18.2,19.0,23.8,25.1,45.7,49.9$, $52.5,60.3,65.4,100.6,106.4,106.9,124.6,136.3,145.7$ and 146.2.

(\pm)-cis-3-Acetoxy-6-(4-methoxybenzylamino)cyclohexene 23

To a solution that had been stirred at room temperature for 20 min and which contained $\mathrm{Pd}(\mathrm{dba})_{2}(172 \mathrm{mg}, 0.29 \mathrm{mmol}), \mathrm{Ph}_{3} \mathrm{P}$ ($225 \mathrm{mg}, 0.86 \mathrm{mmol}$), 4-methoxybenzylamine ($942 \mathrm{mg}, 6.87$ mmol) and $\mathrm{Et}_{3} \mathrm{~N}(1.74 \mathrm{~g}, 17.18 \mathrm{mmol})$ in THF $\left(30 \mathrm{~cm}^{3}\right)$ was added a solution of the cis-chloro acetate $22^{12}(1.00 \mathrm{~g}, 5.73$ mmol) in THF ($10 \mathrm{~cm}^{3}$). The mixture was stirred at room temperature for 8 h and then concentrated. After the residue had been dissolved in diethyl ether $\left(20 \mathrm{~cm}^{3}\right)$, the mixture was extracted with $5 \% \mathrm{HCl}$. The aqueous phase was made alkaline
$(\mathrm{pH}>10)$ with 10% aq. KOH , and the mixture was extracted with diethyl ether. The extract was dried $\left(\mathrm{K}_{2} \mathrm{CO}_{3}\right)$ and concentrated, and the residue was chromatographed on silica gel (AcOEt then pentane) which was first conditioned with 2% $\mathrm{Et}_{3} \mathrm{~N}$ in pentane, to give $\mathbf{2 3}(1.14 \mathrm{~g}, 72 \%)$ (Found: $\mathrm{M}^{+}, 275.1525$. $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{NO}_{2}$ requires $\left.M, 275.1521\right) ; v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1720$; $\delta_{\mathrm{H}}(300 \mathrm{MHz}) 1.57-1.94(5 \mathrm{H}, \mathrm{m}), 2.04(3 \mathrm{H}, \mathrm{s}, \mathrm{COMe}), 3.13-$ $3.20(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 3.78,3.82\left(1 \mathrm{H}\right.$ each, ABq, $\left.J 12.9, \mathrm{ArCH}_{2}\right)$, $3.80(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 5.16-5.21(1 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}), 5.78(1 \mathrm{H}, \mathrm{ddd}$, $J 10.1,3.9$ and 1.9 , olefinic), $5.99(1 \mathrm{H}, \mathrm{dd}, J 10.1$ and 2.6 , olefinic), $6.86(2 \mathrm{H}, \mathrm{d}, J 8.7, \mathrm{ArH})$ and $7.26(2 \mathrm{H}, \mathrm{d}, J 8.7, \mathrm{ArH})$.

N -(4-Acetoxycyclohex-2-enyl)- N -(4-methoxybenzyl)-2-(3,4-
methylenedioxyphenyl)-2-(phenylthio)acetamide 24 methylenedioxyphenyl)-2-(phenylthio)acetamide 24

Using a procedure similar to that described above for the preparation of $\mathbf{1 7}$, a mixture of the acid $\mathbf{1 6}(355 \mathrm{mg}, 1.23 \mathrm{mmol})$ and the amine 23 ($323 \mathrm{mg}, 1.23 \mathrm{mmol}$) was treated with DCC (253 $\mathrm{mg}, 1.23 \mathrm{mmol})$ in the presence of DMAP $(15 \mathrm{mg}, 0.12 \mathrm{mmol})$. After work-up, the crude material was chromatographed on silica gel [hexane-AcOEt (4:1)] to give 24 ($530 \mathrm{mg}, 79 \%$) as an oil (Found: M^{+}, 545.1867. $\mathrm{C}_{31} \mathrm{H}_{31} \mathrm{NO}_{6} \mathrm{~S}$ requires M, 545.1972); $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1730,1640 ; \delta_{\mathrm{H}}(300 \mathrm{MHz}) 1.50-1.93(4 \mathrm{H}, \mathrm{m})$, 1.93, 1.98, 2.01 (total 3 H , all s), 3.79, 3.83 (total 3 H , all s), 4.15-4.40 $(2 \mathrm{H}, \mathrm{m}), 4.73-5.35(3 \mathrm{H}, \mathrm{m}), 5.61-6.03(4 \mathrm{H}, \mathrm{m})$ and 6.35-7.40 ($12 \mathrm{H}, \mathrm{m}$).

($3 R^{*}, 3 \mathrm{a} S^{*}, 5 R^{*}, 7 \mathrm{a} S^{*}$)-5-Acetoxyoctahydro-1-(4-methoxy-benzyl)-3-(3,4-methylenedioxyphenyl)indol-2-one 25

Following the general procedure, compound $\mathbf{2 4}(200 \mathrm{mg}, 0.36$ $\mathrm{mmol})$ was treated with (TMS) $)_{3} \mathrm{SiH}(358 \mathrm{mg}, 1.44 \mathrm{mmol})$ and AIBN ($15 \mathrm{mg}, 0.09 \mathrm{mmol}$). After work-up, the crude material was chromatographed on silica gel [hexane-AcOEt (4:1)] to give 25 ($132 \mathrm{mg}, 84 \%$), mp $148-150^{\circ} \mathrm{C}$ (from hexane-AcOEt) (Found: C, 69.0; H, 6.3; N, 3.4. $\mathrm{C}_{25} \mathrm{H}_{27} \mathrm{NO}_{6}$ requires C, $68.6 ; \mathrm{H}$, $6.2 ; \mathrm{N}, 3.2 \%) ; v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1730,1680 ; \delta_{\mathrm{H}}(300 \mathrm{MHz}) 1.42-$ $1.89(6 \mathrm{H}, \mathrm{m})$, $2.12(3 \mathrm{H}, \mathrm{s}, \mathrm{COMe}), 2.25-2.35(1 \mathrm{H}, \mathrm{m}, 3 \mathrm{a}-\mathrm{H})$, 3.40-3.48 ($1 \mathrm{H}, \mathrm{m}, 7 \mathrm{a}-\mathrm{H}$), 3.74 ($1 \mathrm{H}, \mathrm{d}, J 9.8,3-\mathrm{H}$), $3.81(3 \mathrm{H}, \mathrm{s}$, OMe), $4.01\left(1 \mathrm{H}, \mathrm{d}, J 14.7\right.$, one of $\left.\mathrm{ArCH}_{2}\right), 4.97-5.03(1 \mathrm{H}, \mathrm{m}$, $5-\mathrm{H}), 5.00\left(1 \mathrm{H}, \mathrm{d}, J 14.7\right.$, one of $\left.\mathrm{ArCH}_{2}\right), 5.94(2 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{OCH}_{2} \mathrm{O}\right), 6.61(1 \mathrm{H}, \mathrm{dd}, J 7.8$ and 1.7, ArH), $6.64(1 \mathrm{H}, \mathrm{d}, J 1.7$, ArH), $6.77(1 \mathrm{H}, \mathrm{d}, J 7.8, \mathrm{ArH}), 6.87(2 \mathrm{H}, \mathrm{d}, J 8.7, \mathrm{ArH})$ and 7.23 ($2 \mathrm{H}, \mathrm{d}, J$ 8.7, ArH); $\delta_{\mathrm{C}} 21.5,22.3,26.3,29.2,40.7,43.9$, $52.9,53.6,55.3,69.0,101.0,108.4,108.7,114.1,122.0,128.9$, $129.4,131.7,146.8,148.0,159.1,174.6$ and 184.3.

($3 R^{*}, 3 \mathrm{a} S^{*}, 5 R^{*}, 7 \mathrm{a} S^{*}$)-Octahydro-5-hydroxy-1-(4-methoxy-benzyl)-3-(3,4-methylenedioxyphenyl)indol-2-one 26

To a solution of $\mathbf{2 5}(295 \mathrm{mg}, 0.67 \mathrm{mmol})$ in $\mathrm{MeOH}\left(6 \mathrm{~cm}^{3}\right)$ and water ($5 \mathrm{~cm}^{3}$) was added LiOH monohydrate ($42 \mathrm{mg}, 1.01$ $\mathrm{mmol})$, and the mixture was heated at reflux for 5 h . Water was added to the reaction mixture, which was then extracted with AcOEt. The extract was dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated, and the residue was chromatographed on silica gel [hexane-AcOEt (1:1)] to give $\mathbf{2 6}\left(252 \mathrm{mg}, 95 \%\right.$) as an oil (Found: $\mathrm{M}^{+}, 395.1736$. $\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{NO}_{5}$ requires $M, 395.1732$); $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3650$, 3470, 1670; $\delta_{\mathrm{H}}(300 \mathrm{MHz}) 1.46-1.95(7 \mathrm{H}, \mathrm{m}), 2.20-2.29(1 \mathrm{H}$, $\mathrm{m}, 3 \mathrm{a}-\mathrm{H}), 3.39-3.45(1 \mathrm{H}, \mathrm{m}, 7 \mathrm{a}-\mathrm{H}), 3.81(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.86$ ($1 \mathrm{H}, \mathrm{d}, J 8.4,3-\mathrm{H}), 3.89-3.96(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 4.00(1 \mathrm{H}, \mathrm{d}$, $J 14.7$, one of $\left.\mathrm{ArCH}_{2}\right), 4.98\left(1 \mathrm{H}, \mathrm{d}, J 14.7\right.$, one of $\left.\mathrm{ArCH}_{2}\right), 5.92$ $\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{O}\right), 6.66-6.71(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 6.76(1 \mathrm{H}, \mathrm{d}, J 8.8$, $\mathrm{ArH}), 6.87(2 \mathrm{H}, \mathrm{d}, J 8.7, \mathrm{ArH})$ and $7.22(2 \mathrm{H}, \mathrm{d}, J 8.7, \mathrm{ArH}) ; \delta_{\mathrm{C}}$ 22.1, 29.6, 32.7, 40.9, 43.7, 53.5, 53.8, 55.3, 66.4, 100.9, 108.3, $108.8,114.0,121.9,129.0,129,4,132.1,146.5,147.8,159.0$ and 175.3.

Swern oxidation of 26

A solution of dimethyl sulfoxide (DMSO) ($695 \mathrm{mg}, 8.90 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(6 \mathrm{~cm}^{3}\right)$ was added dropwise to a solution of oxalyl dichloride ($565 \mathrm{mg}, 4.45 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(4 \mathrm{~cm}^{3}\right)$ at $-60^{\circ} \mathrm{C}$.

After this, a solution of $\mathbf{2 6}(176 \mathrm{mg}, 0.45 \mathrm{mmol})$ and DMSO $\left(0.65 \mathrm{~cm}^{3}\right)$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(6 \mathrm{~cm}^{3}\right)$, was added to the mixture, and the whole mixture was stirred at the same temperature for 40 min . After addition of $\mathrm{Et}_{3} \mathrm{~N}(2.25 \mathrm{~g}, 22.25 \mathrm{mmol})$ to the mixture, it was allowed to warm to room temperature. After 1 h , the mixture was diluted with water and extracted with diethyl ether. The extract was washed with saturated aq. NaHCO_{3}, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. The residue was chromatographed on silica gel [hexane-AcOEt (1:1)] to give 8a ($174 \mathrm{mg}, 99 \%$) as an oil, whose physical data were identical with those of an authentic sample prepared by hydrolysis of the acetal $7 \mathbf{7 a}$.

($3 R^{*}, 3 \mathrm{a} S^{*}, 7 \mathrm{a} S^{*}$)-1-(Benzyloxycarbonyl)-5,5-(ethylenedioxy)-

 octahydro-3-(3,4-methylenedioxyphenyl)indole 28Using a procedure similar to that described above for the preparation of 18, compound 7a ($219 \mathrm{mg}, 0.5 \mathrm{mmol}$) was treated with AlH_{3} [prepared from $\mathrm{LiAlH}_{4}(304 \mathrm{mg}, 8 \mathrm{mmol})$ and AlCl_{3} $(1.07 \mathrm{~g}, 8 \mathrm{mmol})$]. Work-up gave $27(185 \mathrm{mg}, 87 \%)$ as an oil, which was used immediately in the next step without further purification.

Compound 27 was treated with Cbz-Cl ($112 \mathrm{mg}, 0.66 \mathrm{mmol}$) as in a manner similar to that described above for the preparation of 19. After work-up, the crude material was chromatographed on silica gel [hexane-AcOEt (5:1)] to give 28 (165 mg , 75% based on 7a) as an oil (Found: $\mathrm{M}^{+}, 437.1834 . \mathrm{C}_{25} \mathrm{H}_{27} \mathrm{NO}_{6}$ requires $M, 437.1838) ; v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1685 ; \delta_{\mathrm{H}}(300 \mathrm{MHz})$ 1.49-1.78 ($5 \mathrm{H}, \mathrm{m}$), 2.06-2.40 ($2 \mathrm{H}, \mathrm{m}$), 3.30-3.45 ($1 \mathrm{H}, \mathrm{m}$), $3.60-3.74(1 \mathrm{H}, \mathrm{m}), 3.78-4.07(6 \mathrm{H}, \mathrm{m}), 5.10-5.20(2 \mathrm{H}, \mathrm{m}), 5.93$ $(2 \mathrm{H}, \mathrm{s}), 6.67-6.78(3 \mathrm{H}, \mathrm{m})$ and 7.28-7.39 (5 H, m).

$\left(4 \mathrm{aS}{ }^{*}, 11 R^{*}, 11 \mathrm{aS}{ }^{*}\right)-8,9-M e t h y l e n e d i o x y-5,11-m e t h a n o-$ morphanthridin-2-one 30

Using a procedure similar to that described above for the preparation of $\mathbf{2 0}$, compound $\mathbf{2 8}(221 \mathrm{mg}, 0.51 \mathrm{mmol})$ was subjected to catalytic hydrogenolysis. Work-up gave the amine hydrochloride $29(178 \mathrm{mg})$, which was used immediately in the next step.

Compound 29 was treated in a manner similar to that described above for the preparation of 21. After work-up, the crude material was chromatographed on silica gel $\left[\mathrm{CHCl}_{3}-\right.$ MeOH (20:1)] to give $30(89 \mathrm{mg}, 64 \%$ based on 28), mp 125$126^{\circ} \mathrm{C}$ (from hexane-AcOEt) (lit., ${ }^{5 d} 125^{\circ} \mathrm{C}$) (Found: M^{+}, 271.1211. $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{NO}_{3}$ requires $\left.M, 271.1208\right) ; v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1}$ $1710 ; \delta_{\mathrm{H}}(300 \mathrm{MHz}) \quad 1.72-1.88(1 \mathrm{H}, \mathrm{m}), 1.97-2.12(1 \mathrm{H}$, m), 2.18-2.28 ($1 \mathrm{H}, \mathrm{m}$), 2.36-2.67 ($4 \mathrm{H}, \mathrm{m}$), $2.68(1 \mathrm{H}, \mathrm{d}, J 2.5$, $11-\mathrm{H}), 3.03\left(1 \mathrm{H}, \mathrm{d}, J 12.1\right.$, one of $\left.12-\mathrm{H}_{2}\right), 3.21(1 \mathrm{H}, \mathrm{dd}, J 11.7$ and 2.7 , one of $\left.12-\mathrm{H}_{2}\right), 3.71(1 \mathrm{H}, \mathrm{dt}, J 11.8$ and $6.8,4 \mathrm{a}-\mathrm{H}), 3.80$ $\left(1 \mathrm{H}, \mathrm{d}, J 17.1\right.$, one of $\left.6-\mathrm{H}_{2}\right), 4.33(1 \mathrm{H}, \mathrm{d}, J 17.1$, one of $\left.6-\mathrm{H}_{2}\right), 5.89\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{O}\right), 6.46(1 \mathrm{H}, \mathrm{s}, \mathrm{ArH})$ and $6.49(1 \mathrm{H}, \mathrm{s}$, $\mathrm{ArH}) ; \delta_{\mathrm{C}} 26.1,36.7,41.5,46.0,46.9,51.9,60.4,64.3,100.7$, 106.4, 107.0, 125.0, 135.3, 145.9, 146.6 and 212.1.

X-Ray crystallographic analysis on compound 7b

X-Ray crystal data of compound $\mathbf{7 b}$ were collected by a Rigaku AFC5R diffractometer. The structure was solved by the direct method using SIR 92^{14} and refined with a full-matrix leastsquares method.

Crystal data of compound 7b. $\mathrm{C}_{25} \mathrm{H}_{27} \mathrm{NO}_{6}, M_{\mathrm{r}}=437.49$, orthorhombic, space group Pna $2_{1}(\# 33), a=12.749(2) \AA$, $b=16.163(2) \AA, c=10.624(2) \AA, \quad V=2189.2(4) \AA^{3}, \quad Z=4$, $D_{\mathrm{x}}=1.327 \mathrm{Mg} \mathrm{m}^{-3}, \quad F(000)=928.00, \lambda=1.54178 \AA, \mu(\mathrm{Cu}-$ Ka) $=7.81 \mathrm{~cm}^{-1}$.

CCDC reference number 207/335. See http://www.rsc.org/ suppdata/p1/1999/1949 for crystallographic files in .cif format.

Acknowledgements

We thank Professor O. Hoshino (Science University of Tokyo)
for providing spectra of compound 30. This work was supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Science, Sports and Culture of Japan.

References

1 B. Giese, Radicals in Organic Synthesis: Formation of CarbonCarbon Bonds, Pergamon Press, Oxford, 1986; D. P. Curran, Comprehensive Organic Synthesis, ed. B. M. Trost and I. Fleming, Pergamon Press, Oxford, 1991, vol. 4, pp. 715-831; D. P. Curran, Synthesis, 1988, 417, 489.
2 For a review, see M. Ikeda, T. Sato and H. Ishibashi, Rev. Heteroat. Chem., 1998, 18, 169.
3 For recent references, see H. Ishibashi, C. Kameoka, K. Kodama, H. Kawanami, M. Hamada and M. Ikeda, Tetrahedron, 1997, 53, 9611; H. Ishibashi, H. Kawanami and M. Ikeda, J. Chem. Soc., Perkin Trans. 1, 1997, 817; H. Ishibashi, H. Kawanami, H. Nakagawa and M. Ikeda, J. Chem. Soc., Perkin Trans. 1, 1997, 2291; M. Ikeda, Y. Kugo, Y. Kondo, T. Yamazaki and T. Sato, J. Chem. Soc., Perkin Trans. 1, 1997, 3339; H. Ishibashi, M. Higuchi, M. Ohba and M. Ikeda, Tetrahedron Lett., 1998, 39, 75; M. Ikeda, H. Teranishi, K. Nozaki and H. Ishibashi, J. Chem. Soc., Perkin Trans. 1, 1998, 1691.
4 L. E. Overman and J. Shim, J. Org. Chem., 1991, 56, 5005; W. H. Pearson and B. W. Lian, Angew. Chem., Int. Ed. Engl., 1998, 37, 1724.

5 For other studies on the synthesis of optically active and racemic 5,11-methanomorphanthridine-family alkaloids of Amaryllidaceae, see (a) O. Hoshino and M. Ishizuka, Chem. Lett., 1990, 1817; M. Ishizaki, O. Hoshino and Y. Iitaka, (b) Tetrahedron Lett., 1991, 32, 7079; (c) J. Org. Chem., 1992, 57, 7285; (d) M. Ishizaki, K. Kurihara, E. Tanazawa and O. Hoshino, J. Chem. Soc., Perkin

Trans. 1, 1993, 101; (e) L. E. Overman and J. Shim, J. Org. Chem., 1993, 58, 4662; (f) J. Jin and S. M. Weinreb, J. Am. Chem. Soc., 1997, 119, 2050.
6 For comprehensive reviews of Amaryllidaceae alkaloids, see S. F. Martin, The Alkaloids, ed. A. Brossi, Academic Press, New York, 1987, vol. 30, pp. 251-376; O. Hoshino, The Alkaloids, ed. G. A. Cordell, Academic Press, New York, 1998, vol. 51, pp. 323-424.
7 A portion of this work has appeared as a preliminary communication. See M. Ikeda, M. Hamada, T. Yamashita, F. Ikegami, T. Sato and H. Ishibashi, Synlett, 1998, 1246.
8 T. Sato, N. Nakamura, K. Ikeda, M. Okada, H. Ishibashi and M. Ikeda, J. Chem. Soc., Perkin Trans. 1, 1992, 2399.

9 (a) H. Ishibashi, T. S. So, K. Okochi, T. Sato, N. Nakamura, H. Nakatani and M. Ikeda, J. Org. Chem., 1991, 56, 95; (b) D. P. Curran and J. Tamine, J. Org. Chem., 1991, 56, 2746; (c) H. Ishibashi, N. Uemura, H. Nakatani, M. Okazaki, T. Sato, N. Nakamura and M. Ikeda, J. Org. Chem., 1993, 58, 2360.

10 H. Ishibashi, M. Ikeda, H. D. Choi, H. Nakagawa, Y. Ueda and Y. Tamura, Chem. Pharm. Bull., 1985, 33, 5310 and references cited therein.
11 T. Kametani, S. Shiotani and K. Mitsuhashi, Chem. Pharm. Bull., 1976, 24, 342.
12 J. E. Bäckvall, J. E. Nyström and R. E. Nordberg, J. Am. Chem. Soc., 1985, 107, 3676.
13 R. G. P. Gatti, A. L. E. Larsson and J. E. Bäckvall, J. Chem. Soc., Perkin Trans. 1, 1997, 577.
14 A. Altomare, M. C. Burla, M. Camalli, M. Cascarano, C. Giacovazzo, A. Guagliardi and G. Polidori, J. Appl. Crystallogr., 1994, 27, 435.

